If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+20w-7125=0
a = 1; b = 20; c = -7125;
Δ = b2-4ac
Δ = 202-4·1·(-7125)
Δ = 28900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28900}=170$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-170}{2*1}=\frac{-190}{2} =-95 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+170}{2*1}=\frac{150}{2} =75 $
| (x+1)/7=4 | | 2(x-6)=4x-(2x-12) | | 2z+1=z,z | | (x-1)*10=500 | | 12m+112=100 | | 2x-1(x)=91 | | 7x-10=5x+15 | | 0.02(2t-7)=0.04(t+4)-0.30 | | 6x−4=4x+10 | | (x+15)*2=140 | | 3.5x+12=11.7 | | 6x+2+2x+3=180 | | F(x)=4x2-8X+4 | | -12(m+9)+8(3m–10)=m+9+1-2(m–5) | | 1w+3=1w-6 | | 3n+7,n=12 | | 2x*4=-19 | | 11^7x=14^-x-4 | | -9(y+2)=7y-34 | | 5x/6=-50 | | 7x(x^2)=0 | | t/3-17=-14 | | 3x-4=20=55 | | (7x-3)(x^2-2x+7)=0 | | 3x/2+6=9. | | 3x-9-8=24x-27-7x | | r+7r=3 | | 10x-18+5x-2=3x+14 | | (x+5)=-54 | | 0.2m=0.9+0.5m | | v/9+6=9 | | 2=(b+2)/2 |